A Message from the Program Director

We hope you had a wonderful holiday season and are looking forward to a great new year. It’s hard to believe that we are on the cusp of beginning our fourth year of vascular education and fellowship training. It’s fair to say that this residency and fellowship program has grown from a fledgling group of two residents and four fellows to become a world-class training program that has been recognized as such by our national governing body and our peers in the medical community.

To date, our vascular surgeons have graduated from our residency and fellowship programs. They have gone on to pursue successful careers at leading medical centers throughout the United States and beyond. We have been proud to have had the opportunity to mentor these individuals and provide them with the training and support they needed to succeed in their careers.

We look forward to keeping you informed about the ongoing developments in our program news and accomplishments. We hope you will continue to provide us with your feedback and suggestions for improvements.

Sincerely,

Mark Byrne, MD
Program Director

Resident Spotlight: Dr. Catherine Go – T32 Research Resident

Exploration of Angiogenesis was recently awarded Best Presentation of the Year at the Bridging Research–Practice symposium given by practitioners and graduate students in the Department of Surgery. Dr. Go is an outstanding resident and active member of our division.

The current therapy is active inflow and/or reperfusion which can be very risky and life-threatening. The RESCUE stent can be inserted to provide temporary support to aorta by blocking the entry point, thus acting as a temporary stop over for the bleeding. Dr. Go, along with her colleagues on the research group led by Bryan Tillman, MD, PhD, has been gainfully researching the feasibility for deploying a retrievable stent-graft they are calling the “RESCUE stent.” The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

Hemorrhage... • The work of Dr. Catherine Go, MD, was recently awarded “Best Presentation of the Year” at a national conference held in Pittsburgh, Pennsylvania in November 2016. Dr. Go, along with her colleagues on the research group led by Bryan Tillman, MD, PhD, has been gainfully researching the feasibility for deploying a retrievable stent-graft they are calling the “RESCUE stent.” The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

Hemorrhage... • The work of Dr. Catherine Go, MD, was recently awarded “Best Presentation of the Year” at a national conference held in Pittsburgh, Pennsylvania in November 2016. Dr. Go, along with her colleagues on the research group led by Bryan Tillman, MD, PhD, has been gainfully researching the feasibility for deploying a retrievable stent-graft they are calling the “RESCUE stent.” The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.

The RESCUE stent is designed to cover injuries of the aorta and inferior vena cava to temporize bleeding, while allowing visceral perfusion until definitive surgery can be performed. The group has already shown that this is feasible and practical, and its use can be extended to noncompressible vessels.