Navigate Up
UPMC/University of Pittsburgh Schools of the Health Sciences
Patients and medical professionals may call 1-800-533-UPMC (8762) for more information.

UPMC Media Relations

Discovery Of Post-Stimulus Activated Release Implies New Mechanisms For Dopamine Release

PITTSBURGH, October 15, 2006 — The neurotransmitter dopamine continues to be released for nearly an hour after neurons are stimulated, suggesting the existence of secondary mechanisms that allow for sustained availability of dopamine in different regions of the brain including areas critical for memory consolidation, drug induced plasticity and maintaining active networks during working memory, according to a University of Pittsburgh study being presented today at the 36th Annual Meeting of the Society for Neuroscience, held at the Georgia World Congress Center in Atlanta.

Determining the mechanisms that cause what is being called “post-stimulus activated release” and how they maintain dopamine levels could have important implications for understanding and treating neurological and psychiatric disorders caused by an imbalance of dopamine function including schizophrenia, attention deficit hyperactivity disorder, Tourette’s syndrome, Parkinson’s disease and addiction.

According to Bita Moghaddam, Ph.D., professor of neuroscience and psychiatry, who led the study, in addition to its clinical benefits, post-stimulus activated release can be used to explain how brief events that activate neurons for short periods of time can influence brain function long after the events. For example, it can be used to explain how smelling freshly baked cookies could evoke childhood memories of spending time with a beloved grandparent, leading a person to reminisce long after the smell is gone and take the unplanned or impulsive action of baking or buying cookies.

Dopamine is a neurotransmitter associated with learning and memory, motor control, reward perception and executive functions such as working memory, behavioral flexibility and decision making. When a novel or salient stimulus occurs, the dopamine neurons in the brain increase their firing rate, boosting the release of dopamine. The dopamine is diffused into the extracellular space of the brain until it can be transported or metabolized.

In a rat model, the researchers have been attempting to understand increases in extracellular levels of dopamine during behaviorally active states, such as completing a cognitive task or experiencing stressful situations and in response to the electrical stimulation of neurons. In their studies, they have observed that dopamine levels remain above the baseline long after neurons had been stimulated – from five to 20 minutes in the ventral tegmental area (VTA) and 40 to 100 minutes in the nucleus accumbens and prefrontal cortex.

Attempting to discern the cause of the elevated levels, researchers stimulated the VTA of the brain of a rat model by using an electrode. The VTA is a nucleus in the midbrain where dopamine neurons are located. After stimulating the neurons, the researchers measured the amount of dopamine in the extracellular fluid of the nucleus accumbens and prefrontal cortex – two areas where the VTA is known to send signals. They found that dopamine levels increased during stimulation, and remained elevated for an hour after stimulation.

Dopamine levels wane as dopamine is taken back into cells by an active transport system. Yet this active transport system is not abundant in the ventral striatum and prefrontal cortex areas, leading researchers to think that perhaps the dopamine levels remained elevated due to an excess that had yet to be absorbed. To test this hypothesis, they applied tetrodotoxin (TTX), a neurotoxin that blocks the active release of dopamine, to the nucleus accumbens and prefrontal cortex. TTX caused dopamine levels to drop, indicating that the dopamine levels remained elevated because dopamine was being actively released after the neurons fired and not because there was residual dopamine in the brain.

Dr. Moghaddam and colleagues are currently conducting experiments in efforts to identify the exact mechanism causing post-stimulus activated release.

This research was funded by the National Institute of Mental Health.

©  UPMC | Affiliated with the University of Pittsburgh Schools of the Health Sciences
Supplemental content provided by A.D.A.M. Health Solutions. All rights reserved.

For help in finding a doctor or health service that suits your needs, call the UPMC Referral Service at 412-647-UPMC (8762) or 1-800-533-UPMC (8762). Select option 1.

UPMC is an equal opportunity employer. UPMC policy prohibits discrimination or harassment on the basis of race, color, religion, ancestry, national origin, age, sex, genetics, sexual orientation, marital status, familial status, disability, veteran status, or any other legally protected group status. Further, UPMC will continue to support and promote equal employment opportunity, human dignity, and racial, ethnic, and cultural diversity. This policy applies to admissions, employment, and access to and treatment in UPMC programs and activities. This commitment is made by UPMC in accordance with federal, state, and/or local laws and regulations.

Medical information made available on UPMC.com is not intended to be used as a substitute for professional medical advice, diagnosis, or treatment. You should not rely entirely on this information for your health care needs. Ask your own doctor or health care provider any specific medical questions that you have. Further, UPMC.com is not a tool to be used in the case of an emergency. If an emergency arises, you should seek appropriate emergency medical services.

For UPMC Mercy Patients: As a Catholic hospital, UPMC Mercy abides by the Ethical and Religious Directives for Catholic Health Care Services, as determined by the United States Conference of Catholic Bishops. As such, UPMC Mercy neither endorses nor provides medical practices and/or procedures that contradict the moral teachings of the Roman Catholic Church.

© UPMC
Pittsburgh, PA, USA UPMC.com