Navigate Up
UPMC/University of Pittsburgh Schools of the Health Sciences

Patients and medical professionals may call 1-800-533-UPMC (8762) for more information.
 

UPMC Experts

Joel S. Greenberger
 

University of Pittsburgh Schools of the Health Sciences

​Enzyme Delivered In Smaller Package Protects Cells from Radiation Damage

University of Pittsburgh and Stanford University Researchers Prove Effectiveness of Approach in Preparation for Clinical Trial

SEATTLE, June 1, 2007 A University of Pittsburgh School of Medicine research team, collaborating with scientists from Stanford University, have developed a new, smaller gene therapy vector that may be effective in delivering a radioprotective enzyme systemically throughout the body which may spare healthy tissue the long-term consequences of therapeutic irradiation. These results are being presented at the 10th annual meeting of the American Society of Gene Therapy, being held May 30 to June 3 at the Washington State Convention & Trade Center, Seattle.

Combined with intensive chemotherapy, high dose whole-body irradiation often is given to patients with blood and lymphatic cancers to wipe out their bone marrow cells prior to subsequent transplantation of hematopoietic stem cells, bone marrow stem cells or peripheral blood progenitor stem cells. However, there is increasing concern that such high doses of radiation may have long-term negative effects on healthy tissues and organs, such as the kidney, liver and thyroid gland.

Based on previous studies showing that intravenous gene therapy delivery of the enzyme manganese superoxide dismutase (MnSOD) could protect mice from whole body irradiation, and in preparation for a potential clinical trial of systemic MnSOD in humans, the University of Pittsburgh and Stanford researchers, led by Joel S. Greenberger, M.D., professor and chair of the department of radiation oncology, University of Pittsburgh School of Medicine, delivered the human MnSOD enzyme into mouse hematopoietic progenitor cells using a newly constructed gene therapy vector called a minicircle plasmid.

To determine if the cells transfected with the MnSOD minicircle plasmid retained radioprotective capacity, they irradiated those cells as well as another cell line transfected with MnSOD in a full-sized plasmid. They also irradiated a parent mouse cell line that had not been transfected with MnSOD. After irradiation, the cells were plated in a growth medium and incubated at body temperature for 7 days at which time colonies of greater than 50 cells were counted.

The MnSOD transfected cells were significantly more resistant to ionizing radiation than the non-tranfected cells. However, there was no significant difference in survival between MnSOD-minicircle and MnSOD full plasmid transfected cells. According to Dr. Greenberger, whose group is currently conducting a phase I/II clinical trial in lung cancer patients consisting of twice-weekly swallowed MnSOD for protection of the esophagus from chemoradiotherapy damage, these results suggest that minicircle DNA containing the human MnSOD transgene confers undiminished radioprotection to cells.

Because we now can deliver MnSOD in this very small vector, we will be able to get this radioprotective enzyme more efficiently into all of the cells of the body and give patients receiving total body radiation for systemic cancers better long-term outcomes. This also has implications for the prophylactic protection of those who may be the first responders to a nuclear accident ora terrorist attack, such as a dirty bomb, he explained.

 
 

©  UPMC | Affiliated with the University of Pittsburgh Schools of the Health Sciences
Supplemental content provided by A.D.A.M. Health Solutions. All rights reserved.

For help in finding a doctor or health service that suits your needs, call the UPMC Referral Service at 412-647-UPMC (8762) or 1-800-533-UPMC (8762). Select option 1.

UPMC is an equal opportunity employer. UPMC policy prohibits discrimination or harassment on the basis of race, color, religion, ancestry, national origin, age, sex, genetics, sexual orientation, marital status, familial status, disability, veteran status, or any other legally protected group status. Further, UPMC will continue to support and promote equal employment opportunity, human dignity, and racial, ethnic, and cultural diversity. This policy applies to admissions, employment, and access to and treatment in UPMC programs and activities. This commitment is made by UPMC in accordance with federal, state, and/or local laws and regulations.

Medical information made available on UPMC.com is not intended to be used as a substitute for professional medical advice, diagnosis, or treatment. You should not rely entirely on this information for your health care needs. Ask your own doctor or health care provider any specific medical questions that you have. Further, UPMC.com is not a tool to be used in the case of an emergency. If an emergency arises, you should seek appropriate emergency medical services.

For UPMC Mercy Patients: As a Catholic hospital, UPMC Mercy abides by the Ethical and Religious Directives for Catholic Health Care Services, as determined by the United States Conference of Catholic Bishops. As such, UPMC Mercy neither endorses nor provides medical practices and/or procedures that contradict the moral teachings of the Roman Catholic Church.

© UPMC
Pittsburgh, PA, USA UPMC.com