Navigate Up

UPMC/University of Pittsburgh Schools of the Health Sciences
Senior Manager
Telephone: 412-578-9193 or 412-624-3212
University of Pittsburgh Schools of the Health Sciences 

Quantum Dots Spotlight DNA-Repair Proteins in Motion, Says Pitt Expert

PITTSBURGH, March 11, 2010 – Repair proteins appear to efficiently scan the genome for errors by jumping like fleas between DNA molecules, sliding along the strands, and perhaps pausing at suspicious spots, say researchers at the University of Pittsburgh, the University of Essex and the University of Vermont who tagged the proteins with quantum dots to watch the action unfold. The findings are available today in Molecular Cell.

Everyone is constantly bombarded with environmental toxins that inflict small errors in the DNA code, so a rapid repair system is essential to maintain the integrity of the sequences for proper cell function, explained senior author Bennett Van Houten, Ph.D., Richard M. Cyert Professor of Molecular Oncology and leader, molecular and cellular cancer biology program, University of Pittsburgh Cancer Institute (UPCI), and professor, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine.

“How this system works is an important unanswered question in this field,” he said. “It has to be able to identify very small mistakes in a 3-dimensional morass of gene strands. It’s akin to spotting potholes on every street all over the country and getting them fixed before the next rush hour.”

The researchers sought to unravel the mystery by tagging two repair proteins, called UvrA and UvrB, with quantum dots, which are semi-conductor nanocrystals that light up in different colors. They also stretched the usually clumped DNA into multiple “tightropes” to see the process more clearly.

They watched while UvrA proteins randomly jumped from one DNA molecule to the next, holding on to one spot for about seven seconds before hopping to another site. But when UvrA formed a complex with two UvrB molecules (UvrAB), a new and more efficient search technique emerged: the complex slid along the DNA tightrope for as long as 40 seconds before detaching itself and jumping to another molecule.

“If an E.coli bacterium  had only one UvrAB complex, 13 hours would elapse before the entire genome was scanned for errors,” said lead researcher Neil M. Kad, Ph.D., Department of Biological Sciences, University of Essex, United Kingdom. “About 40 complexes, comparable to the estimates of what occurs naturally, would be needed to scan it within the bacterium’s 20-minute doubling time.”

In addition to random jumping and sliding, the researchers also observed what they called “paused motion,” in which UvrAB’s motion seemed slower and purposeful.

“About one-third of the motile molecules in our study behaved this way,” said co-author David M. Warshaw, Ph.D., professor and chair, Department of Molecular Physiology and Biophysics, University of Vermont. “Paused motion could represent UvrAB complexes checking for structural abnormalities associated with DNA damage.”

The researchers now are exploring the possibility that the complexes sample the shape or chemical configuration of DNA by interacting with it; an error could alter the local DNA structure, changing its handshake with the repair proteins and perhaps triggering a corrective response.

The study was funded by the National Institutes of Health, the Royal Society and UPCI. Hong Wang, Ph.D., of UPCI and the University of Pittsburgh School of Medicine, and Guy G. Kennedy, of the University of Vermont’s Instrumentation and Model Facility, co-authored the paper.

©  UPMC | Affiliated with the University of Pittsburgh Schools of the Health Sciences
Supplemental content provided by A.D.A.M. Health Solutions. All rights reserved.

For help in finding a doctor or health service that suits your needs, call the UPMC Referral Service at 412-647-UPMC (8762) or 1-800-533-UPMC (8762). Select option 1.

UPMC is an equal opportunity employer. UPMC policy prohibits discrimination or harassment on the basis of race, color, religion, ancestry, national origin, age, sex, genetics, sexual orientation, marital status, familial status, disability, veteran status, or any other legally protected group status. Further, UPMC will continue to support and promote equal employment opportunity, human dignity, and racial, ethnic, and cultural diversity. This policy applies to admissions, employment, and access to and treatment in UPMC programs and activities. This commitment is made by UPMC in accordance with federal, state, and/or local laws and regulations.

Medical information made available on UPMC.com is not intended to be used as a substitute for professional medical advice, diagnosis, or treatment. You should not rely entirely on this information for your health care needs. Ask your own doctor or health care provider any specific medical questions that you have. Further, UPMC.com is not a tool to be used in the case of an emergency. If an emergency arises, you should seek appropriate emergency medical services.

For UPMC Mercy Patients: As a Catholic hospital, UPMC Mercy abides by the Ethical and Religious Directives for Catholic Health Care Services, as determined by the United States Conference of Catholic Bishops. As such, UPMC Mercy neither endorses nor provides medical practices and/or procedures that contradict the moral teachings of the Roman Catholic Church.

© UPMC
Pittsburgh, PA, USA UPMC.com