Navigate Up


Study participant Maury Noonan explains how the regenerative medicine procedure and physical therapy aided his recovery.
UPMC/University of Pittsburgh Schools of the Health Sciences
For Journalists
Lawerence Synett
Manager
Telephone: 412-647-9816
Senior Director
Telephone: 412-586-9764
Patient & Other Inquiries



Regenerative Medicine Improves Strength and Function in Severe Muscle Injuries

PITTSBURGH, July 21, 2016 – Results of a study conducted by researchers at the University of Pittsburgh School of Medicine and the McGowan Institute for Regenerative Medicine showed significant improvement in strength and range of motion, as well as evidence for skeletal muscle regeneration, in 13 patients who were surgically implanted with bioscaffolds derived from pig tissue to treat muscle injuries. The patients had failed to respond to conventional treatment before use of the extracellular matrix (ECM). The findings were published online today in npj Regenerative Medicine.
 
“Previously, there was no effective treatment for these patients, but this approach holds significant promise,” said senior investigator Stephen F. Badylak, D.V.M., Ph.D., M.D., professor of surgery at Pitt and deputy director of the McGowan Institute, a joint effort of Pitt and UPMC. “This approach could be a game changer and not just an incremental advance.”
 
For the Muscle Tendon Tissue Unit Repair and Reinforcement Reconstructive Surgery Research Study, which was sponsored by the U.S. Department of Defense, 11 men and two women who had lost at least 25 percent of leg or arm muscle volume and function first underwent a customized regimen of physical therapy for four to 16 weeks.
 
Lead study surgeon J. Peter Rubin, M.D., UPMC Professor and Chair of Plastic Surgery, Pitt School of Medicine, then surgically implanted a “quilt” of compressed ECM sheets designed to fill in their injury sites. Within 48 hours of the operation, the participants resumed physical therapy for up to 24 additional weeks.
 
By six months after implantation, patients showed an average improvement of 37.3 percent in strength and 27.1 percent in range of motion tasks compared with pre-operative performance numbers. CT or MRI imaging also showed an increase in post-operative soft tissue formation in all 13 patients.
 
“For well-selected patients with this type of loss, we now have a treatment available to help improve their function,” Dr. Rubin said.
 
The new data builds upon a previous Pitt study that showed damaged leg muscles grew stronger and showed signs of regeneration in three out of five men whose old injuries were surgically implanted with ECM derived from pig bladder. Those patients also underwent similar pre- and post-operative physical therapy.
 
The recent results included more patients with varying limb injuries; used three different types of pig tissues for ECM bioscaffolds; investigated neurogenic cells as a component of the functional remodeling process; and included CT and MRI imaging to evaluate the remodeled muscle tissue.
 
“The three different types of matrix materials used all worked the same, which is significant because it means this is a generic property of these materials and gives the surgeons a choice for using whichever tissue they like,” Dr. Badylak said. “Prior to the surgery, each patient went through physical therapy focused on getting them to the point where they couldn’t get any better. We then started active rehab 24 hours after surgery, which proved to be critically important for these patients.”
 
The research team included lead authors Jenna Dziki, Dr. Badylak, Dr. Rubin, and others from Pitt and McGowan. The project was supported by a research grant from the U.S. Department of the Interior, grant D11AC00006.
 
The U.S. Department of Defense’s Limb Salvage and Regenerative Medicine Initiative and the Muscle Tendon Tissue Unit Repair and Reinforcement Reconstructive Surgery Research Study are collaboratively managed by the Office of the Secretary of Defense. The initiative is focused on rapidly and safely transitioning advanced medical technology in commercially viable capabilities to provide wounded warriors the safest and most advanced care possible today.

UPMC | Affiliated with the University of Pittsburgh Schools of the Health Sciences Supplemental content provided by Healthwise, Incorporated. To learn more, visit www.healthwise.org

For help in finding a doctor or health service that suits your needs, call the UPMC Referral Service at 412-647-UPMC (8762) or 1-800-533-UPMC (8762). Select option 1.

UPMC is an equal opportunity employer. UPMC policy prohibits discrimination or harassment on the basis of race, color, religion, ancestry, national origin, age, sex, genetics, sexual orientation, gender identity, marital status, familial status, disability, veteran status, or any other legally protected group status. Further, UPMC will continue to support and promote equal employment opportunity, human dignity, and racial, ethnic, and cultural diversity. This policy applies to admissions, employment, and access to and treatment in UPMC programs and activities. This commitment is made by UPMC in accordance with federal, state, and/or local laws and regulations.

Medical information made available on UPMC.com is not intended to be used as a substitute for professional medical advice, diagnosis, or treatment. You should not rely entirely on this information for your health care needs. Ask your own doctor or health care provider any specific medical questions that you have. Further, UPMC.com is not a tool to be used in the case of an emergency. If an emergency arises, you should seek appropriate emergency medical services.

UPMC
Pittsburgh, PA, USA | UPMC.com