UPMC CHANGING MEDICINE

Modern Management of Major Hemorrhage

Benjamin Morrow, MSN RN UPMC Stroke Institute

Outline

- SAH statistics
- Presentation and Triage
- Aneurysm Treatment
- Complications
- Outcomes

Bleeding into the space surrounding the brain

- Characterized by
 - 1. Sudden onset WHOL (80%)
 - 2. Nuchal Rigidity
 - 3. Nausea and vomiting
 - 4. Seizures
 - 5. Loss of consciousness
- Risk factors
 - 1. Hypertension
 - 2. Smoking
 - 3. Drug use
 - 4. Family history

85 % caused by ruptured intracranial aneurysm

Subarachnoid Hemorrhage Incidence

Mortality

Pre-hospital mortality = 15%

In-Hospital mortality = 18%

6 month mortality = 52%

Accounts for 27% of all stroke related life years lost

Open in a separate window

Fig. 4

Hospital mortality according to admission Hunt-Hess grade over the 12.5-year study period. Each time epoch represents 300 consecutive admissions. A dramatic fall in mortality was observed among grade 5 patients between epochs 1 and 2; a similar reduction occurred among grade 4 patients between epochs 3 and 4. HH Hunt-Hess

Table 4Relationship of medical and neurological complications to in-hospital mortality

			Uni	variate/Unadjusted		Mult	Multivariate/Adjusted ^a	
	Survivors	Non-survivors	OR	95 % CI	${\it P}$ value	OR	95 % CI	P valu
Fever >101.5 F	480 (49)	137 (63)	1.9	1.4-2.6	0.000	0.8	0.5-1.3	0.35
Hyperglycemia, >200 mg/dl	408 (42)	143 (66)	2.9	2.1-4.0	0.000	1.1	0.7-1.8	0.76
Hydrocephalus requiring EVD or VPS	289 (29)	142 (66)	4.7	3.5-6.5	0.417	1.4	0.9-2.2	0.15
Anemia requiring transfusion	319 (32)	75 (35)	1.1	0.8-1.6	0.000	0.7	0.45-1.0	0.10
Global cerebral edema	205 (21)	107 (50)	3.7	2.8-5.2	0.000	1.8	1.1-2.9	0.02
New infarct on CT scan	233 (24)	78 (36)	2.0	1.5-2.8	0.000	0.7	0.4-1.1	0.09
ICP crisis or herniation ^a	153 (16)	106 (49)	5.7	4.0-7.9	0.000	2.5	1.4-3.7	0.00
Hypotension, <90 mm Hg ^b	160 (16)	122 (57)	6.7	4.9-9.2	0.000	3.4	2.2-5.3	0.00
Pneumonia	191 (19)	67 (31)	1.9	1.4-2.7	0.000	0.6	0.4-1.0	0.06
Hypernatremia, >150 mEq/l	151 (15)	99 (46)	5.1	3.6-7.1	0.000	2.1	1.3-3.4	0.00
Urinary tract infection	226 (23)	13 (6)	0.2	0.1-0.4	0.881	0.1	0.0-0.2	0.00
Clinical deterioration from vasospasm	170 (17)	36 (17)	0.9	0.7-1.4	0.000	0.9	0.6-1.6	0.81
Pulmonary edema	137 (14)	68 (32)	2.9	2.0-4.1	0.000	1.3	0.8-2.0	0.33
Herniation	62 (6)	106 (50)	15.3	10.5-22.1	0.052	8.3	4.9-14.3	0.00
Hyponatremia, <130 mEq/l	140 (14)	20 (9)	0.6	0.4-1.0	0.010	0.5	0.3-0.96	0.04
Sepsis/Bacteremia	91 (9)	32 (15)	1.8	1.1-2.7	0.000	1.4	0.79-2.4	0.26
Arrhythmia	71 (7)	49 (23)	3.7	2.5-5.6	0.000	1.6	0.9-2.8	0.09
Aneurysm rebleeding	54 (6)	64 (30)	6.9	4.6-10.4	0.000	3.5	1.9-5.9	0.00
Congestive heart failure	62 (6)	39 (18)	3.3	2.1-5.1	0.001	2.2	1.3-3.8	0.00
Seizures	55 (6)	25 (12)	2.3	1.4-3.8	0.068	1.6	0.8-3.0	0.20
Delayed cerebral ischemia								
Symptomatic vasospasm without infaret	104 (11)	14 (7)	0.6	0.3-1.0	0.095	0.5	0.3-1.0	0.06
Symptomatic vasospasm with infarct	64 (7)	21 (10)	1.5	0.9-2.6	0.004	1.9	1.0-3.7	0.07
No symptomatic vasospasm with infarct	23 (2)	13 (6)	2.7	1.3-5.4	0.000	2.2	0.8-5.8	0.13
Non-neurogenic myocardial ischemia	46 (5)	43 (20)	5.1	3.3-8.1	0.000	2.8	1.6-5.1	0.00
Hepatic injury, AST or ALT >200 mg/dl	24 (2)	22 (10)	4.6	2.5-8.4	0.000	2.5	1.2-5.3	0.01
GI bleeding requiring transfusion	19 (2)	14 (7)	3.5	1.7-7.1	0.000	1.7	0.7-4.3	0.27

E ANGING DICINE

What is the difference?

Triage

- Non contrast CT
- Lumbar Puncture
- MRI
- CTA
- DSA

Transfer?

- High volume centers:
 - 1.6 OR for treatment of aneurysm
 - Lower mortality (39% vs 27%)
 - Better rates of good outcome
- \$10,548 = 1.6 QALY gain

Transfer

 AHA REC "Low-volume hospitals (eg <10 cases per year) should consider transfer of patients with aSAH to high-volume centers (eg >35 cases per year) with experienced cerebrovascular surgeons, endovascular specialists, and multidisciplinary neurointensive care services" Class I - B

Early Management

- Blood Pressure Control
 - AHA CPG = <160
 - UPMC
 - H/H grades 1/2/3 = <120
 - H/H grades 4/5 = <140
- Neurologic status
 - Assess hourly for decline
- Consider EVD
- Secure Aneurysm
 - Target first 24 hours

Severity Classification

Grade	Characteristics	Mortality Rate (%)
0	Unruptured aneurysm without symptoms	0
1	Asymptomatic or minimal headache and slight nuchal rigidity	1
1a	No acute meningeal or brain reaction but with fixed neurologic deficit	1
2	Moderate to severe headache, nuchal rigidity, no neurologic deficit other than cranial nerve palsy	5
3	Drowsy, confused, or mild focal deficit	19
4	Stupor, moderate to severe hemiparesis, possible early decerebrate rigidity, and vegetative disturbances	42
5	Deep coma, decerebrate rigidity, moribund	77

TJC CSTK -3a

WFNS Grade	Glasgow Coma Scale Score	Motor Deficit
I	15	Absent
II	14-13	Absent
III	14-13	Present
IV	12-7	Present or absent
V	6-3	Present or absent

			GRADE UPMC Presb		
	SAH				
GRADE	2016	2017	2018	TOTAL	Mortality
1	0/18	0/13	0/11	0/42	0%
2	3/49	0/39	3/35	6/123	4.8%
3	5/29	1/22	2/17	8/68	11.7 %
4	4/9	0/13	4/11	8/33	24.2 %
5	5/21	4/10	9/13	18/44	40.9 %
Not Done	2/14	0/10	6/23	8/47	
					13.4 %
TOTAL	19/140	5/107	24/110	48/357	

Aneurysm Treatment

- Primary objective after identification of SAH
 - Best way to prevent rebleed

AHA:

- "Surgical clipping or endovascular coiling of the ruptured aneurysm should be performed as early as feasible in the majority of patients to reduce the risk of rebleeding" 1-B
- "Complete Obliteration of the aneurysm is recommended whenever possible" 1 -B

International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial

Findings 190 of 801 (23.7%) patients allocated endovascular treatment were dependent or dead at 1 year compared with 243 of 793 (30.6%) allocated neurosurgical Sun treatment (p=0.0019). The relative and absolute risk Back reductions in dependency or death after allocation to incre clipp an endovascular versus neurosurgical treatment were the r estal 22.6% (95% CI 8.9-34.2) and 6.9% (2.5-11.3), respectively. comp stan The risk of rebleeding from the ruptured aneurysm after be si 1 year was two per 1276 and zero per 1081 patient-years Meti for patients allocated endovascular and neurosurgical intra neur treatment, respectively. by d were

ascertainment of repleeds and death. The primary outcome was the proportion of patients with a modified Rankin scale score of 3–6 (dependency or death) at 1 year. Trial recruitment was stopped by the steering committee after a planned interim analysis. Analysis was per protocol.

microsurgical techniques and instruments, advances in anaesthetic and intensive-care management, improved diagnostic facilities, and the development of vascular neurosurgery as a subspecialty. Nonetheless, even with these advances, relatively few patients return to a

ng

ost

lip

oth nd

ed

ry

ng

in

ıs.

in

on

er

Clinical Practice

- AHA "for patients with aneurysm judged to be technically amenable to both endovascular coiling and microsurgical clipping, endovascular coiling should be considered" 1-B
- 80 % coil vs clip rates
- Individualize
- Consider all factors
 - Size, shape, location, age, presence of hematoma

A patient in their early teens was treated with a single p64 flow diverter for an unruptured aneurysm arising from the proximal A1 segment of the right anterior cerebral artery.

P Bhogal et al. J NeuroIntervent Surg 2017;9:283-289

A middle-aged patient with 9 mm internal carotid artery-terminus aneurysm with contralateral access via SL-10 microcatheter, avoiding Y-stent, and demonstrating the trackability of the Neuroform Atlas stent (upper row), with complete occlusion at 12 months follow-up (lower row).

Brian T Jankowitz et al. J NeuroIntervent Surg doi:10.1136/neurintsurg-2018-014455

Copyright © Society of NeuroInterventional Surgery. All rights reserved.

Ongoing Care

- Vasospasm
- Hydrocephalus
- Fluid and electrolyte status
- Fever
- VTE
- Seizures

Vasospasm

- DCI vs angiographic vasospasm
- Begins post bleed day 3
- Most common day
 7-10
- Out of risk day 21

vasospasm

- Cause
- Prevention Nimodipine, Euvolemia
- Monitoring serial exams, TCD, follow-up angiography
- Treatment hypertension, angioplasty, direct vasodilators

Hydrocephalus

- Occurs in up to 80% of aSAH
- Fluid Diversion
 - EVD
 - LD
 - Long-term

Fluid status

- Hyponatremia occurs in 30% of aSAH
- Hyponatremia and Cerebral Salt Wasting
 - Goal of maintaining eunatremia
 - Treatment options
 - Fludrocortisone
 - 3% saline should be considered when other measures to maintain eunatremia have failed
- Strict I/O targeting euvolemia
- Daily weights

Fever

- Most common complication after aSAH
- Target normothermia
- Treat any fever over 37.5
 - Tylenol
 - Surface cooling
 - Intravascular cooling

VTE

Prophylaxis

- SCDs for all patients
- Pharmacologic prophylaxis 24 hours post-operative / postprocedure

Diagnosis

- LE Dopplers on post-bleed day #5 and q5 days thereafter, as well as any febrile pt with no known source
- Consider CT-PE protocol in pt with unexplained tachycardia, hypoxia, tachypnea

Seizures

- Occurs in 26% of patients after aSAH
 - Only 3-7% are delayed
- Prophylaxis not indicated
- In the event of seizure treat
- No Phenytoin
- AHA IIb—B rec for prophylaxis

Planning for discharge

- Comprehensive plan
- Close support
- Cognitive evaluations
- Rehabilitation
- Follow-up monitoring

Conclusion

- Recognize that a severe HA can mean SAH GET A CT SCAN!
- Triage to a facility best prepared to manage these patients
- Closely monitor blood pressure to prevent HTN prior to securing an aneurysm and hypotension after an aneurysm
- Monitor neurologic status closely
- Secure the aneurysm within 24 hours
- Manage fever aggressively
- Maintain euvolemia and eunatremia
- Be aware of potential cognitive/behavioral changes
- DON'T EVER LET A SUB ARACHOID FOOL YOU

Resources

- CPG AHA Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage 2012
- The Lisa Foundation
 - Lisafoundation.org
- Brain Aneurysm Foundation
 - bafound.org
- UPMC SAH support group
- Brain Aneurysm 5K Pittsburgh September Annually
 - Register at give.bafound.org

Thank You

Benjamin Morrow- morrowbk@upmc.edu