GJC2 Missense Mutations Cause Human Lymphedema

Robert E. Ferrell,1,4 Catherine J. Baty,2,4 Mark A. Kimak,1 Jenny M. Karlsson,2 Elizabeth C. Lawrence,1 Marlise Franke-Snyder,1 Stephen D. Meriney,3 Eleanor Feingold,1 and David N. Finegold1,4,*

Lymphedema is the clinical manifestation of defects in lymphatic structure or function. Mutations identified in genes regulating lymphatic development result in inherited lymphedema. No mutations have yet been identified in genes mediating lymphatic function that result in inherited lymphedema. Survey microarray studies comparing lymphatic and blood endothelial cells identified expression of several connexins in lymphatic endothelial cells. Additionally, gap junctions are implicated in maintaining lymphatic flow. By sequencing GJA1, GJA4, and GJC2 in a group of families with dominantly inherited lymphedema, we identified six probands with unique missense mutations in GJC2 (encoding connexin [Cx] 47). Two larger families cosegregate lymphedema and GJC2 mutation (LOD score = 6.5). We hypothesize that missense mutations in GJC2 alter gap junction function and disrupt lymphatic flow. Until now, GJC2 mutations were only thought to cause dysmyelination, with primary expression of Cx47 limited to the central nervous system. The identification of GJC2 mutations as a cause of primary lymphedema raises the possibility of novel gap-junction-modifying agents as potential therapy for some forms of lymphedema.

Reported missense mutations in the GJC2 gene were found in two families with lymphedema. In family 168, a novel frameshift insertion was identified in the extracellular domain of Cx47. In family 135, a novel missense mutation was identified in the extracellular domain of Cx47, resulting in a R260C substitution. These mutations were not found in control samples.

Missense mutations in GJC2 were identified in two additional families with lymphedema. In family 135, a novel missense mutation was identified in the extracellular domain of Cx47, resulting in a R260C substitution. These mutations were not found in control samples.

1Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; 2Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; 3Department of Neuroscience, Faculty of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
4These authors contributed equally to this work
*Correspondence: dnf@pitt.edu

DOI 10.1016/j.ajhg.2010.04.010 ©2010 by The American Society of Human Genetics. All rights reserved.
a model of disease frequency = 0.0001, penetrance = 0.9, phenocopy rate = 0.0, assuming no recombination. The R260C mutation is located within the conserved SRPTEK motif, important for connexon docking. This motif is a target of peptide mimetic inhibitors of GJIC for Cx43 and Cx32.15,16 Four additional unique GJC2 mutations were observed in other, smaller families: H19P in the N-terminal domain, R125Q in the intracellular loop, G149S in the intracellular loop, and P316L in the C-terminal domain were transmitted from an affected parent to an affected child. Samples were not available from other family members, and these cases are consistent with, but not informative for, linkage. (Figure 2; Table 1).

GJC2 mutations occur only in affected or at-risk individuals, cause a change in a conserved amino acid of Cx47, and were not present in 250 sequenced, ethnically matched controls (0 of 500 alleles). These missense mutations affect amino acids highly conserved in mammalian evolution, showing only one variation of glycine to alanine in the case of the G149S mutation (Figure 3). Non-lymphedema-associated sequence variants were also identified (Table S2).

The current age or age at death, genotype with respect to GJC2, age at onset of lymphedema of the leg and/or hand, and other phenotypic features in the families demonstrating linkage are shown in Figure 1. Uncomplicated lymphedema of the leg or hand was the only constant feature reported in the affected individuals. Individual IV-20, family 135, was reported to have a nuchal fold at birth but was nonpenetrant for lymphedema. Many affected individuals had onset of lymphedema in childhood or adolescence. Individuals IV-4, family 168, and III-18, IV-19, and IV-20, family 135, were nonpenetrant males, showing reduced penetrance of GJC2 mutations in these families. Generally, males showed a later age at onset than females. Other features reported in some lymphedema pedigrees (ptosis, cellulitis, venous insufficiency, etc.) appeared sporadically in these families. Four individuals in family 135 reported recurrent skin infections. In the four smaller families with mutations, the clinical phenotypes were similar to the families demonstrating linkage, including a later age at onset.

Of note, two additional rare mutations, one leading to a truncated Cx47 protein (E44ter) and a 22 bp deletion leading to a truncation of the GJC2 protein at residue 30, were identified. These changes were not present in 500 control alleles but failed to segregate with disease in pedigrees. These early nonsense changes are predicted to code for a prematurely truncated polypeptide, leading to a null allele. The carriers of these truncation mutations showed no discernable phenotype, consistent with the Cx47-deficient mouse, in which heterozygous or homozygous null animals have no gross phenotype and no Cx47-specific developmental or functional abnormality.17,18

We show here that mutations in GJC2 cause primary lymphedema, through linkage in two families and significant genetic evidence from four independent families. We hypothesize that coordinated gap junction function is needed to optimize the conduction of lymph from the periphery to the thoracic duct and is compromised in individuals with GJC2 missense mutations. In vivo evidence in rat mesenteric lymphatics shows significant impairment of contraction propagation upon treatment with nonspecific gap junction inhibitors.13,14 The GJC2 mutations are notable because they support an abnormality in lymphatic function rather than the previously identified mutations in genes causing abnormal lymphatic development. Such functional abnormalities could potentially benefit from the current development of gap-junction-modifying drugs,19,20 offering a novel medical treatment for lymphedema.

The role of GJC2/Cx47 in lymphatic function is unexpected because it has a demonstrated primary role in the central nervous system (CNS), with expression reportedly limited to oligodendrocytes.17,21 Homozygous loss-of-function mutations in GJC2 cause Pelizaeus-Merzbacher-like disease (PMLD; MIM 608804), characterized by severe CNS dysmyelination.22,23 Neither individuals affected with PMLD nor their obligate heterozygous carriers of GJC2 mutations are reported to have a lymphatic phenotype, although the clinical phenotype of lymphedema is often subtle. Likewise, the clinical information available on our lymphedema patients and families would be insensitive to a mild clinical neurological abnormality. We observed no mutations in the transmembrane domains where many of the PMLD mutations are found.23

The GJC2 lymphedema mutations are distributed throughout the protein, with no geographical clustering.
However, the two mutations located in the extracellular loop domains (i.e., S48L and R260C) are predicted to interfere with connexon (i.e., hemichannel) assembly into functional channels. The linked R260C mutation is located in a conserved SRPTEK motif important for connexon docking; the importance of this motif is further underscored by a homologous autosomal-dominant GJA1 mutation (R202H) identified in families with oculodentodigital dysplasia (MIM 164200), with functional characteristics of poor plaque formation and impaired dye transfer and electrical coupling.24,25 Similarly, we expect these two extracellular mutations to result in impaired channel activity and propose that this might result in impaired coordination of pulsatile lymphatic flow.14 The mechanism through which the identified intracellular mutations mediate their effects is not clear, especially in light of the more recent recognition that connexin function is not limited only to their well-recognized channel activity but may involve hemichannel function or changes in cell adhesion or motility.26–29 Further characterization of the

Figure 1. Pedigrees of the Two Linked Families
Pedigrees of the two linked families showing current age or age at death, cosegregation of GJC2 missense mutation with lymphedema, age at onset of lymphedema of the leg and/or hand, and other phenotypic features. Family 168, R260C, and family 135, S48L, are shown. Filled shapes indicate affected individuals with lymphedema. LOD = 6.5. Arrows indicates the probands.
mutations reported here, especially with regard to their predicted dominant-negative effect with wild-type Cx47 or transdominant effect with other endogenous connexins expressed in LECs, will contribute to our understanding of the role of connexins in lymphatic function.

Although we are approaching the 400th anniversary of the first description of the lymphatic system in 1627, lymphatics remain a poorly understood and largely neglected biological system. Despite an essential and active role in the maintenance of fluid homeostasis, trafficking of antigen-presenting and other immune cells, and pathological processes like chronic inflammation and cancer, the lymphatic vascular system is often viewed as a passive conduit rather than an interactive participant in these processes. The identification of mutations in the Cx gene family in primary lymphedema justifies further investigation into the manipulation of gap-junction-coordinated lymphatic flow and function as a possible therapeutic option for primary lymphedema.

Figure 2. Schematic Drawing of Connexin 47 Protein Locating Lymphedema-Associated Amino Acid Substitutions
Domain break points and sequence are as described by Uhlenberg et al. and http://www.uniprot.org/uniprot/Q5T442.

Figure 3. Amino Acid Alignment of Cx47 from Different Species
Tan indicates intracellular domains; green indicates transmembrane domains; white indicates extracellular domains. Red dots represent the positions of amino acids altered in lymphedema families.
Supplemental Data

Supplemental Data include two tables and can be found with this article online at http://www.cell.com/AJHG.

Acknowledgments

We acknowledge the partial support of institutional funds from the Office of the Dean of the Graduate School of Public Health and the Office of the Senior Vice Chancellor of the University of Pittsburgh, the Competitive Medical Research Fund of the UPMC Health System, and National Institutes of Health grants R01 HL092866 and HD37243. We gratefully acknowledge the cooperation and generous assistance of the patients and families participating in the University of Pittsburgh Lymphedema Family Study.

Received: December 3, 2009
Revised: April 9, 2010
Accepted: April 21, 2010
Published online: May 27, 2010

Web Resources

The URLs for data presented herein are as follows:

Genomics and Proteomics Core Laboratory of the University of Pittsburgh, http://www.genetics.pitt.edu/

References