Navigate Up

UPMC/University of Pittsburgh Schools of the Health Sciences
Senior Manager
Telephone: 412-578-9193 or 412-624-3212
Manager
Telephone: 412-864-4151

 

Downloadable Photos:

 

The chimeric mouse on the left is made up of a mixture of normal (white) cells and mutant (black) cells as reflected in the variation in its fur color.  The chimera is the father of the first MDD (major depressive disorder) mouse shown on the right.  The MDD mouse has been engineered to contain a rare mutation that typically leads to MDD in people who inherit it, and provides a new model to study the brain mechanism that leads to this common and debilitating illness. Credit line: Zubenko, GS, Hughes III HB. Am J Med Genet Part B, 2011. Copyright © 2011 Wiley-Liss, Inc.

 

 

 

 

Translucent brain images produced by 3-dimensional magnetic resonance microscopy of MDD mouse. Credit line: Zubenko, GS, Hughes III HB. Am J Med Genet Part B, 2011. Copyright © 2011 Wiley-Liss, Inc.

Video:

Translucent brain images produced by 3-dimensional magnetic resonance microscopy reveal that compared to the normal animal, the brain of the MDD mouse has reduced brain tissue, as reflected by enlarged ventricles or cavities (white). The mutant mouse provides a new way to study MDD that is based on a brain mechanism that leads to the illness.

University of Pittsburgh Schools of the Health Sciences 

Building a Better Mouse Model: Pitt Researchers Develop New, Gene-Based Model to Study Depression

PITTSBURGH, May 19, 2010 - Researchers at the University of Pittsburgh School of Medicine have developed a mouse model of major depressive disorder (MDD) that is based on a rare genetic mutation that appears to cause MDD in the majority of people who inherit it. The findings, which were published online today in the American Journal of Medical Genetics Part B: Neuropsychiatric Genetics EarlyView, could help to clarify the brain events that lead to MDD, and contribute to the development of new and better means of treatment and prevention. This report also illustrates an advance in the design of recombinant mouse models that should be applicable to many human diseases.

"Major depressive disorder is a leading cause of suffering, disability and premature death from all causes including suicide. While the cause currently is unknown, twin and adoption studies indicate that genetic factors account for 40 to 70 percent of the risk for developing this common disorder," explained lead author George Zubenko, M.D., Ph.D., professor of psychiatry, Pitt School of Medicine. 

“In this report, we describe how we constructed a laboratory mouse strain that mimics the brain mechanism that leads to major depression in humans, rather than symptoms,” he said. “Nonetheless, in our initial characterization, the mutant mice exhibited several features that were reminiscent of the human disorder, including alterations of brain anatomy, gene expression, behavior, as well as increased infant mortality.”

“These findings support the role of the genetic variant in the development of MDD, and affirm the mutant mouse strain as a model of MDD worthy of further study,” Dr. Zubenko said. Hugh B. Hughes, III, M.S., served as the co-author of this report.

Previous studies of families with a severe and strongly familial form of MDD revealed a mutation in the control region of CREB1, a gene that orchestrates the expression of many other genes that play important roles in normal brain functioning. Mice have a CREB1 gene that is very similar to the human version and, with the aid of genetic engineering techniques, the researchers were able to establish a mutant mouse strain that bore the same genetic error. Since the control regions of corresponding human and mouse genes often have regions of high similarity, the methods described in this report may be useful in creating mouse models of other human diseases.

“Treatments that are the most effective and produce the fewest side effects typically address the root causes of the disease,” Dr. Zubenko noted. “Animal models that recapitulate those root causes should better inform us about the brain mechanisms that lead to MDD, and have the best chance of leading to advances in treatment and prevention."

This work was supported by grants from the National Institute of Mental Health; and the Provost's Fund for Research Development and the Shane Richard Brown Fund, both of the University of Pittsburgh. MRI data were collected at the Pittsburgh NMR Center for Biomedical Research at Carnegie Mellon University and were analyzed with support from the Office of the Senior Vice Chancellor for the Health Sciences, University of Pittsburgh, and the National Center for Research Resources, a component of the National Institutes of Health (NIH) and NIH Roadmap for Medical Research.

For videos or photographs of the MDD mouse, contact Anita Srikameswaran at 412-578-9193 or SrikamAV@upmc.edu.

About the University of Pittsburgh School of Medicine

As one of the nation’s leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1997.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region’s economy. For more information about the School of Medicine, see www.medschool.pitt.edu.

©  UPMC | Affiliated with the University of Pittsburgh Schools of the Health Sciences
Supplemental content provided by A.D.A.M. Health Solutions. All rights reserved.

For help in finding a doctor or health service that suits your needs, call the UPMC Referral Service at 412-647-UPMC (8762) or 1-800-533-UPMC (8762). Select option 1.

UPMC is an equal opportunity employer. UPMC policy prohibits discrimination or harassment on the basis of race, color, religion, ancestry, national origin, age, sex, genetics, sexual orientation, marital status, familial status, disability, veteran status, or any other legally protected group status. Further, UPMC will continue to support and promote equal employment opportunity, human dignity, and racial, ethnic, and cultural diversity. This policy applies to admissions, employment, and access to and treatment in UPMC programs and activities. This commitment is made by UPMC in accordance with federal, state, and/or local laws and regulations.

Medical information made available on UPMC.com is not intended to be used as a substitute for professional medical advice, diagnosis, or treatment. You should not rely entirely on this information for your health care needs. Ask your own doctor or health care provider any specific medical questions that you have. Further, UPMC.com is not a tool to be used in the case of an emergency. If an emergency arises, you should seek appropriate emergency medical services.

For UPMC Mercy Patients: As a Catholic hospital, UPMC Mercy abides by the Ethical and Religious Directives for Catholic Health Care Services, as determined by the United States Conference of Catholic Bishops. As such, UPMC Mercy neither endorses nor provides medical practices and/or procedures that contradict the moral teachings of the Roman Catholic Church.

© UPMC
Pittsburgh, PA, USA UPMC.com