Navigate Up

UPMC/University of Pittsburgh Schools of the Health Sciences
For Journalists
Manager, Science Writing
Telephone: 412-647-9966



New Brain Research Reveals that Motor Neurons Adjust to Control Tasks

Findings Will Improve the Reliability of Brain-Machine Interfaces

PITTSBURGH, April 18, 2017 – New research from Carnegie Mellon University’s College of Engineering and the University of Pittsburgh reveals that motor cortical neurons optimally adjust how they encode movements in a task-specific manner. The findings enhance our understanding of how the brain controls movement and have the potential to improve the performance and reliability of brain-machine interfaces, or neural prosthetics, that assist paralyzed patients and amputees.
 
“Our brain has an amazing ability to optimize its own information processing by changing how individual neurons represent the world. If we can understand this process as it applies to movements, we can design more precise neural prostheses,” says Steven Chase, Ph.D., assistant professor in the Department of Biomedical Engineering and the Center for Neural Basis of Cognition. “We can one day, for example, design robotic arms that more accurately implement a patient’s intended movement because we now better understand how our brain adjusts on a moment-by-moment basis when we are in motion.”
 
The study explored the change in brain activity during simple motor tasks performed through virtual reality in both 2-D and 3-D. The researchers wanted to know if the motor cortical neurons would automatically adjust their sensitivity to direction when presented with a wide range of possible directions instead of a narrow one. Previous research in the field has suggested that this phenomenon, called dynamic range adaptation, is known to occur in neurons sensitive to sound, touch, and light—prompting the researchers to ask if the same phenomena would apply to neurons in the motor system that are associated with movement.
 
“When you walk out into the bright summer sun, you squint, and the neurons in your retina use dynamic range adaptation to automatically increase their sensitivity so that you can clearly see until the clouds pass over again,” explains Robert Rasmussen, M.D./Ph.D. student at the Pitt School of Medicine and first author of the study. “This feature allows the brain to better encode information by using its limited resources efficiently. We wanted to find out if our brain encodes movement in the same way.”
 
The results revealed that dynamic range adaptation did indeed occur in the motor cortical neurons. Based on these findings, the researchers concluded that this feature is widespread throughout the brain.
 
“We found that dynamic range adaptation isn’t restricted to sensory areas of the brain. Instead, it is a ubiquitous encoding feature of the cortex,” explains Andrew Schwartz, Ph.D., distinguished professor of neurobiology and chair in systems neuroscience at the Pitt School of Medicine, and a member of the University of Pittsburgh Brain Institute. “Our findings show that it is a feature of information processing that your brain uses to efficiently process whatever information it is given—whether that is light, sound, touch or movement. This is an exciting result that will motivate further research into motor learning and future clinical applications.”
 
The study was published in the April 18 issue of the journal eLife. Research funding was provided by the National Science Foundation, the PA Department of Health Research, the National Institutes of Health, and the Defense Advanced Research Project Agency (DARPA). The research team included Rasmussen, Schwartz, and Chase. For more information, please read the full article: http://dx.doi.org/10.7554/eLife.21409.  

UPMC | Affiliated with the University of Pittsburgh Schools of the Health Sciences Supplemental content provided by Healthwise, Incorporated. To learn more, visit www.healthwise.org

For help in finding a doctor or health service that suits your needs, call the UPMC Referral Service at 412-647-UPMC (8762) or 1-800-533-UPMC (8762). Select option 1.

UPMC is an equal opportunity employer. UPMC policy prohibits discrimination or harassment on the basis of race, color, religion, ancestry, national origin, age, sex, genetics, sexual orientation, gender identity, marital status, familial status, disability, veteran status, or any other legally protected group status. Further, UPMC will continue to support and promote equal employment opportunity, human dignity, and racial, ethnic, and cultural diversity. This policy applies to admissions, employment, and access to and treatment in UPMC programs and activities. This commitment is made by UPMC in accordance with federal, state, and/or local laws and regulations.

Medical information made available on UPMC.com is not intended to be used as a substitute for professional medical advice, diagnosis, or treatment. You should not rely entirely on this information for your health care needs. Ask your own doctor or health care provider any specific medical questions that you have. Further, UPMC.com is not a tool to be used in the case of an emergency. If an emergency arises, you should seek appropriate emergency medical services.

UPMC
Pittsburgh, PA, USA | UPMC.com