7/28/2022
In a paper published today in PLOS Biology, scientists showed that two areas of the auditory cortex are specialized to recognize human voice sounds that, unlike speech, do not carry linguistic meaning. Rather, they help us react to sound cues that allow people to instantly identify characteristics of the person who is speaking, such as gender, approximate age, mood and even height—all without seeing them.
Humans live in a world full of sounds, where noises from the environment shape our daily interactions with our surroundings and other people. And even though speech is one of the unique aspects of human communication that does not have direct analogs in the animal world, people do not rely on speech alone to convey auditory information.
Non-speech aspects of voice serve a vital role in our communication toolbox, expanding human ability to express oneself accurately and dynamically. Part of that expression is subconscious, and part of it may be intentionally modulated by the speaker to convey a wide spectrum of emotion, such as happiness, fear or disgust.
Abel, who is a practicing pediatric neurosurgeon specializing in epilepsy, had a unique opportunity to peek at how the human brain responds to voice.
To identify regions of the brain that are responsible for generating seizures in some people with epilepsy, neurosurgeons may implant temporary electrodes into the brain to carefully record its electrical signals. This practice allows physicians to precisely locate the site of the seizure and eventually remove that part of the brain, while sparing the surrounding healthy tissue.
Using a combination of direct brain recordings and computational modeling, investigators were able to describe in unprecedented detail how voice representation evolves over time and decode when a voice sound had been played based on patterns of neural activity from the auditory cortex.
Researchers found that most of that activity came from two regions in the auditory cortex—folds of the brain’s gray matter known as superior temporal gyrus (STG) and superior temporal sulcus (STS). While prior brain imaging studies showed that the STG and STS are important for voice processing, this study demonstrates that these regions represent voice as a distinct sound category rather than simply representing the physical or acoustic aspects of voice.
Kyle Rupp, Ph.D., is lead author on the paper; additional authors are Jasmine Hect, Madison Remick, Avniel Ghuman, Ph.D., and Bharath Chandrasekaran, Ph.D., all from Pitt; and Lori Holt, Ph.D., of Carnegie Mellon University.
This research was supported by the National Institutes of Health (grants R21DC019217-01A1 awarded and 2R01DC013315-07).
Left photo:
PHOTO DETAILS: (click images for high-res versions)
CREDIT: UPMC
CAPTION: Taylor Abel, M.D.
Right photo:
PHOTO DETAILS: (click images for high-res versions)
CREDIT: Taylor Abel and Kyle Rupp
CAPTION: Distinct regions of the auditory cortex are specialized at recognizing voice sounds (shown in dark blue) and do not respond to non-voice acoustic signals