Skip to Content
800-533-8762
  • Careers
  • Newsroom
  • Health Care Professionals
  • About Us
  • Contact Us
UPMC
  • Find a Doctor
  • Services
    • Frequently Searched Services
    • Frequently Searched Services
      Allergy & Immunology Behavioral & Mental Health Cancer Ear, Nose & Throat Endocrinology Gastroenterology Heart & Vascular Imaging Neurosciences Orthopaedics
      Physical Rehabilitation Plastic & Reconstructive Surgery Primary Care Senior Services Sports Medicine Telemedicine Transplant Surgery Walk-In Care Weight Management Women’s Health
      See all Services
    • Services by Region
    • Find a UPMC health care facility close to you quickly by browsing by region.
      UPMC in Western Pa. Western Pa. and New York
      UPMC in Central Pa. Central Pa.
      UPMC in North Central Pa. North Central Pa.
      UPMC in Western Md. Maryland & West Virginia
    • See All Services
  • Locations
    • Locations by Type
    • Locations by Type
      UPMC hospitals
      Hospitals
      Physical Therapy
      Physical Therapy
      Urgent care
      Walk-In Care
      UPMC Outpatient Centers
      Outpatient Centers
      UPMC Imaging Services
      Imaging
      Community Health Centers
      Community Health Centers
      See All Locations
    • Locations by Region
    • Locations by Region
      UPMC in Southwest Pa. Southwest Pa.
      UPMC in North Central Pa. North Central Pa.
      UPMC in Northwest Pa and Ny. Northwest Pa. & Western N.Y.
      UPMC in West Central Pa. West Central Pa.
      UPMC in Central Pa. Central Pa.
      UPMC in Western Md. Maryland & West Virginia
    • See All Locations
  • Patients & Visitors
    • Patient & Visitor Resources
    • Patient & Visitor Resources
      Patients and Visitors Resources Pay a Bill Classes & Events Medical Records Health Library Patient Information
      Patient Portals Privacy Information Shared Decision Making Traveling Patients Visitor Information
      Man uses mobile phone
      Pay a Bill
      Nurse reviews medical chart
      Request Medical Records
  • Patient Portals
  • Find Covid-19 updates
  • Schedule an appointment
  • Request medical records
  • Pay a bill
  • Learn about financial assistance
  • Find classes & events
  • Send a patient an eCard
  • Make a donation
  • Volunteer
  • Read HealthBeat blog
  • Explore UPMC Careers
Skip to Content
UPMC
  • Patient Portals
  • For Patients & Visitors
    • Find a Doctor
    • Locations
    • Patient & Visitor Resources
    • Pay a Bill
    • Services
    • More
      • Medical Records
      • Financial Assistance
      • Classes & Events
      • HealthBeat Blog
      • Health Library
  • About UPMC
    • Why UPMC
    • Facts & Stats
    • Supply Chain Management
    • Community Commitment
    • More
      • Financials
      • Support UPMC
      • UPMC Apps
      • UPMC Enterprises
      • UPMC International
  • For Health Care Professionals
    • Physician Information
    • Resources
    • Education & Training
    • Departments
    • Credentialing
  • Careers
  • Contact Us
  • Newsroom
  • UPMC >
  • Media Relations >
  • News Releases >
  • 101921 Byrne scAAVengr
Media Relations
News Releases
Central Pa. News
North Central Pa. News
Contact Us
Experts
Community-Focused News
Media Kits
Media RSS
Media Relations
News Releases
Central Pa. News
North Central Pa. News
Contact Us
Experts
Community-Focused News
Media Kits
Media RSS

Chat Keywords List

  • cancel or exit: Stops your conversation
  • start over: Restarts your current scenario
  • help: Shows what this bot can do
  • terms: Shows terms of use and privacy statement
  • feedback: Give us feedback
Continue
Chat with UPMC
RESTART
MENU
CLOSE

Novel Gene Therapy Platform Speeds Search for Ways to Cure Blindness

For Journalists

Anastasia (Ana) Gorelova
Senior Manager, Science Writing
412-647-9966
gorelovaa@upmc.edu

Sheila Davis
Manager
412-313-6070
davissn2@upmc.edu

Want to Make an Appointment or Need Patient Information?
Contact UPMC at

1-800-533-8762.

Go to Find a Doctor to search for a UPMC doctor.

2021 PITT HS horiz

10/19/2021

PITTSBURGH – A novel computational platform developed by researchers from the University of Pittsburgh School of Medicine identifies top-performing viral vectors that could deliver gene therapies to the retina with maximum efficiency and precision.

 

The technology, described in a paper published today in the journal eLife, streamlines development of gene therapy approaches for the treatment of genetic blinding disorders. The approach saves precious time and resources by speeding up identification of suitable gene-carrying candidates able to deliver therapy to an affected part of the retina with astounding accuracy.

 

Leah Byrne release“Vision loss has a huge impact on quality of life. It has long been near the top of the greatest fears of people, alongside cancer and Alzheimer’s disease,” said senior author Leah Byrne, Ph.D., assistant professor of ophthalmology at Pitt. “But the field of vision restoration has entered a new era, where many patients have received effective treatment for the very first time. Because of that, the potential of our new platform is thrilling—it will allow us to translate emergent therapies that are already working for some patients into the clinic much more rapidly.”

 

Even though blinding genetic disorders that affect the retina are considered rare, approximately 1 in every 3,000 people worldwide carries one or more copies of broken genes that cause retinal degeneration and loss of vision. For centuries, many people with inherited blindness were all but guaranteed to spend a portion of their lives in darkness. 

 

Now, with several gene therapies already on the market in Europe and the U.S., and dozens more entering clinical trials, hope for people with inherited blindness is within reach, but a key obstacle remains: ensuring that vectors, or inactivated viruses carrying the therapeutic genetic code, enter the exact cells that scientists are targeting. The retina is composed of hundreds of millions of cells that are arranged into a series of layers, so precisely targeting the vector to a specific location within that universe is not a trivial task.

 

GFP scaavengr 1 releaseTo approach the problem, researchers developed a computational platform called scAAVengr, which uses single-cell RNA sequencing to quickly and quantitatively evaluate—among dozens of options—which adeno-associated virus vector, or AAV, is best suited for the task of delivering a gene therapy to a specific part of the retina. 

 

The traditional approach of evaluating AAVs is painstakingly slow, requiring several years and many experimental animals. It also is not very precise, since it doesn’t directly measure if AAVs not only entered the cells but also delivered their gene therapy cargo. 

 

In contrast, scAAVengr uses single-cell RNA sequencing, which detects if the cargo arrives at its destination safely. And with scAAVengr, that process takes months, not years.

 

The platform’s uses aren’t just limited to the retina—the researchers showed that it works just as well for the identification of AAVs that target other tissues, including the brain, heart and liver.

 

“A rising tide lifts all boats, and we hope that this technology propels gene therapy treatments not just in the field of vision restoration but for other purposes,” said Byrne. “Rapidly developing fields of gene editing and optogenetics all rely on efficient gene delivery, so the ability to quickly and strategically choose the delivery vectors would be an exciting leap forward.”

 

Other authors of this research include Bilge Öztürk, Ph.D., Molly Johnson, B.S., Serhan Turunç, Ph.D., Jing He, B.S., Sara Jabalameli, P.S.M., Zhouhuan Xi, B.S., William R. Stauffer, Ph.D., and José-Alain Sahel, M.D., all of Pitt; Michael Kleyman, Ph.D., and Andreas Pfenning, Ph.D., both of Carnegie Mellon University; Meike Visel, Ph.D., David Schaffer, Ph.D., and John Flannery, Ph.D., all of the University of California Berkeley; Valérie Dufour, Ph.D., Simone Iwabe, Ph.D., Felipe Pompeo Marinho, Ph.D., and Gustavo Aguirre, Ph.D., all of the University of Pennsylvania.

 

This research was supported by the National Institutes of Health (F32EY023891, R24EY-022012, R01EY017549, P30EY001583, UG3MH120094, DP2MH113095), The UPMC Immune Transplant and Therapy Center, Foundation Fighting Blindness, Ford Foundation, Research to Prevent Blindness and the Van Sloun Fund for Canine Genetic Research.
PHOTO INFO: (click images for high-res versions)

 

Top:
CREDIT: Joshua Franzos
CAPTION: Leah Byrne, Ph.D., assistant professor of ophthalmology, University of Pittsburgh School of Medicine.

 

Bottom:
CREDIT: Leah Byrne
CAPTION: Cells in the periphery of the retina infected with AAV carrying a green fluorescent protein. The cells’ nuclei are labeled blue.
UPMC
200 Lothrop Street Pittsburgh, PA 15213

412-647-8762 800-533-8762

Patients And Visitors
  • Find a Doctor
  • Locations
  • Pay a Bill
  • Patient & Visitor Resources
  • Disabilities Resource Center
  • Services
  • Medical Records
  • No Surprises Act
  • Price Transparency
  • Financial Assistance
  • Classes & Events
  • Health Library
Health Care Professionals
  • Physician Information
  • Resources
  • Education & Training
  • Departments
  • Credentialing
Newsroom
  • Newsroom Home
  • Inside Life Changing Medicine Blog
  • News Releases
About
  • Why UPMC
  • Facts & Stats
  • Supply Chain Management
  • Community Commitment
  • Financials
  • Supporting UPMC
  • HealthBeat Blog
  • UPMC Apps
  • UPMC Enterprises
  • UPMC Health Plan
  • UPMC International
  • Nondiscrimination Policy
Life changing is...
Follow UPMC
  • Contact Us
  • Website/Email Terms of Use
  • Medical Advice Disclaimer
  • Privacy Information
  • Active Privacy Alerts
  • Sitemap
© 2025 UPMC I Affiliated with the University of Pittsburgh Schools of the Health Sciences Supplemental content provided by Healthwise, Incorporated. To learn more, visit healthwise.org
Find Care
Providers
Video Visit
Portal Login