Skip to Content
800-533-8762
  • Careers
  • Newsroom
  • Health Care Professionals
  • About Us
  • Contact Us
UPMC
  • Find a Doctor
  • Services
    • Frequently Searched Services
    • Frequently Searched Services
      Allergy & Immunology Behavioral & Mental Health Cancer Ear, Nose & Throat Endocrinology Gastroenterology Heart & Vascular Imaging Neurosciences Orthopaedics
      Physical Rehabilitation Plastic & Reconstructive Surgery Primary Care Senior Services Sports Medicine Telemedicine Transplant Surgery Walk-In Care Weight Management Women’s Health
      See all Services
    • Services by Region
    • Find a UPMC health care facility close to you quickly by browsing by region.
      UPMC in Western Pa. Western Pa. and New York
      UPMC in Central Pa. Central Pa.
      UPMC in North Central Pa. North Central Pa.
      UPMC in Western Md. Maryland & West Virginia
    • See All Services
  • Locations
    • Locations by Type
    • Locations by Type
      UPMC hospitals
      Hospitals
      Physical Therapy
      Physical Therapy
      Urgent care
      Walk-In Care
      UPMC Outpatient Centers
      Outpatient Centers
      UPMC Imaging Services
      Imaging
      Community Health Centers
      Community Health Centers
      See All Locations
    • Locations by Region
    • Locations by Region
      UPMC in Southwest Pa. Southwest Pa.
      UPMC in North Central Pa. North Central Pa.
      UPMC in Northwest Pa and Ny. Northwest Pa. & Western N.Y.
      UPMC in West Central Pa. West Central Pa.
      UPMC in Central Pa. Central Pa.
      UPMC in Western Md. Maryland & West Virginia
    • See All Locations
  • Patients & Visitors
    • Patient & Visitor Resources
    • Patient & Visitor Resources
      Patients and Visitors Resources Pay a Bill Classes & Events Medical Records Health Library Patient Information
      Patient Portals Privacy Information Shared Decision Making Traveling Patients Visitor Information
      Man uses mobile phone
      Pay a Bill
      Nurse reviews medical chart
      Request Medical Records
  • Patient Portals
  • Find Covid-19 updates
  • Schedule an appointment
  • Request medical records
  • Pay a bill
  • Learn about financial assistance
  • Find classes & events
  • Send a patient an eCard
  • Make a donation
  • Volunteer
  • Read HealthBeat blog
  • Explore UPMC Careers
Skip to Content
UPMC
  • Patient Portals
  • For Patients & Visitors
    • Find a Doctor
    • Locations
    • Patient & Visitor Resources
    • Pay a Bill
    • Services
    • More
      • Medical Records
      • Financial Assistance
      • Classes & Events
      • HealthBeat Blog
      • Health Library
  • About UPMC
    • Why UPMC
    • Facts & Stats
    • Supply Chain Management
    • Community Commitment
    • More
      • Financials
      • Support UPMC
      • UPMC Apps
      • UPMC Enterprises
      • UPMC International
  • For Health Care Professionals
    • Physician Information
    • Resources
    • Education & Training
    • Departments
    • Credentialing
  • Careers
  • Contact Us
  • Newsroom
  • UPMC >
  • Media Relations >
  • News Releases >
  • 081318 Neural Stem Cells
Media Relations
News Releases
Central Pa. News
North Central Pa. News
Contact Us
Experts
Community-Focused News
Media Kits
Media RSS
Media Relations
News Releases
Central Pa. News
North Central Pa. News
Contact Us
Experts
Community-Focused News
Media Kits
Media RSS

Chat Keywords List

  • cancel or exit: Stops your conversation
  • start over: Restarts your current scenario
  • help: Shows what this bot can do
  • terms: Shows terms of use and privacy statement
  • feedback: Give us feedback
Continue
Chat with UPMC
RESTART
MENU
CLOSE

When it Comes to Regrowing Tails, Neural Stem Cells Are the Key

For Journalists

Erin Hare, Ph.D.
Manager, Science Writing
412-738-1097
HareE@upmc.edu

Allison Hydzik
Director, Science and Research
412-647-9975
hydzikam@upmc.edu

Want to Make an Appointment or Need Patient Information?
Contact UPMC at

1-800-533-8762.

Go to Find a Doctor to search for a UPMC doctor.

Pitt Health Sciences

8/13/2018

PITTSBURGH – Cut off a salamander’s tail and, in a few weeks, a near-perfect replacement grows. Do the same to a lizard and a new tail will regrow, but it won’t be the same as the original. By comparing tail regeneration between the two animals, researchers at the University of Pittsburgh School of Medicine found that stem cells in the spinal cord are the ultimate limiting factor.

This finding, published this week in Proceedings of the National Academy of Sciences, answers the longstanding question of why tail regeneration is perfect in the salamander and imperfect in the lizard, and may serve as a stepping stone to understanding why mice can’t regenerate their tails at all.

“The traditional animal model for regeneration is the salamander,” said senior author Thomas P. Lozito, Ph.D., assistant professor in Pitt’s Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering and the McGowan Institute for Regenerative Medicine. “Salamanders can regenerate a wide variety of tissues – brain, heart, parts of their eyes, limbs, tails – but they have whole classes of molecule types and tissues that just aren’t found in mammals, so we really haven’t been able to apply very much of what we found in the salamander to humans.”

According to Lozito, if the goal is to translate regeneration research to non-regenerating species like humans, the lizard is a much better model than the salamander. Lizards are the closest relative tomammals that can regenerate an appendage, and they have a similar genome and biochemistry. But lizards cannot regenerate lost limbs at all, and their regenerated tails are much simpler than the originals.

“You can easily tell a lizard with a regenerated tail,” Lozito said. “It doesn't get anything right. The scales are different; the color pattern is different, and then when you look inside the tail, all the tissues are different. There's no bone; the skeleton is completely cartilaginous, just tubes within tubes.”

Understanding what separates perfect regeneration in the salamander from imperfect regeneration in the lizard lays the groundwork for bridging the gap to non-regenerating species, Lozito said.

Lozito’s lizard of choice is the mourning gecko, which has several interesting properties, including a high tolerance for transplantation.

This feature allowed his team to take neural stem cells – the nascent precursors of neurons and glia, the non-neuronal cells that surround them – from the salamander and insert them into the lizard’s regenerating tail stump. The goal was to see what holds back tail regeneration in the lizard: the biochemical environment or the lizard’s native stem cells.

They found the transplanted salamander stem cells retained their ability to differentiate into multiple cell types, including neurons. By contrast, lizard neural stem cells could become only glial cells, which don’t process the messages that direct movement and feeling.

“It was a nice surprise,” said lead author Aaron Sun, Ph.D., a Pitt physician-scientist trainee who completed part of his research in Lozito’s lab. “And it goes to show that maybe the regenerative processes are still somewhat conserved.”

But perhaps the most surprising observation, according to Sun, is that the traditionally described “neural stem cells” driving regeneration in the lizard are not “true” neural stem cells at all. Although they check many of the classic boxes, they fall short of a defining characteristic – the ability to spring forth a diversity of cell types.

That explains why there isn’t perfect tail regeneration in the lizard, Lozito said. The neural stem cells can’t produce the different cell types that would be needed to recreate the asymmetries of the original spinal cord, which in turn stymies the development of bony vertebrae.

“The spinal cord is the master regulator of tail regeneration, and these differences that we’re seeing between lizard and salamander tails are due to differences in stem cell quality,” Lozito said. “It’s all because of the neural stem cells.”

Additional authors on this study include Ricardo Londono, M.D., Ph.D., Megan L. Hudnall, B.S., and Rocky S. Tuan, Ph.D., all of Pitt.

This research was funded by National Institutes of Health grant R01-GM115444.

Watch the Regeneration: Salamanders v. Lizards video. 
Credit: UPMC/Nate Langer

(click images below for high-res versions)

Salamanders tails regenerate perfectly, whereas lizard tails grow back imperfectly and mouse tails don't grow back at all. Credit: Thomas P. Lozito.

Credit: Thomas P. Lozito

Salamanders tails regenerate perfectly, whereas lizard tails grow back imperfectly and mouse tails don't grow back at all.

The regenerated lizard spinal cord (top right) contains fewer nerves than the original (top left) and they are encased in a tube of cartilage. In contrast, regenerated salamander spinal cord (bottom right) has all of the structure and form of the original (bottom left). Credit: Thomas P. Lozito.

Credit: Thomas P. Lozito

The regenerated lizard spinal cord (top right) contains fewer nerves than the original (top left) and they are encased in a tube of cartilage. In contrast, regenerated salamander spinal cord (bottom right) has all of the structure and form of the original (bottom left).

UPMC
200 Lothrop Street Pittsburgh, PA 15213

412-647-8762 800-533-8762

Patients And Visitors
  • Find a Doctor
  • Locations
  • Pay a Bill
  • Patient & Visitor Resources
  • Disabilities Resource Center
  • Services
  • Medical Records
  • No Surprises Act
  • Price Transparency
  • Financial Assistance
  • Classes & Events
  • Health Library
Health Care Professionals
  • Physician Information
  • Resources
  • Education & Training
  • Departments
  • Credentialing
Newsroom
  • Newsroom Home
  • Inside Life Changing Medicine Blog
  • News Releases
About
  • Why UPMC
  • Facts & Stats
  • Supply Chain Management
  • Community Commitment
  • Financials
  • Supporting UPMC
  • HealthBeat Blog
  • UPMC Apps
  • UPMC Enterprises
  • UPMC Health Plan
  • UPMC International
  • Nondiscrimination Policy
Life changing is...
Follow UPMC
  • Contact Us
  • Website/Email Terms of Use
  • Medical Advice Disclaimer
  • Privacy Information
  • Active Privacy Alerts
  • Sitemap
© 2025 UPMC I Affiliated with the University of Pittsburgh Schools of the Health Sciences Supplemental content provided by Healthwise, Incorporated. To learn more, visit healthwise.org
Find Care
Providers
Video Visit
Portal Login