Also part of the UPMC family:
Also part of the UPMC family:

​Gene Therapy via Ultrasound Could Offer New Tool in Fight Against Heart Disease and Cancer

For Journalists

Lawerence Synett
Manager
412-647-9816
synettl@upmc.edu

Wendy Zellner
Senior Director
412-586-9777
zellnerwl@upmc.edu

Want to Make an Appointment or Need Patient Information?
Contact UPMC at

1-800-533-UPMC (8762).

Go to Find a Doctor to search for a UPMC doctor.

8/22/2016

Main Content
PITTSBURGH, Aug. 22, 2016 – Combining ultrasound energy and microbubbles to poke holes in cells may prove to be a new tool in the fight against cardiovascular disease and cancer, according to researchers from the University of Pittsburgh and UPMC. A study on this gene therapy approach, called sonoporation, appears today in the Proceedings of the National Academy of Sciences (PNAS).
 
“We can use ultrasound energy in combination with small, gas-filled bubbles to selectively open up cells to allow the delivery of therapeutic agents,” said Brandon Helfield, Ph.D., lead author of the study and a postdoctoral fellow at the Center for Ultrasound Molecular Imaging and Therapeutics at UPMC. “With a focused ultrasound beam, this approach lets us tune this delivery to the precise location of disease while sparing healthy tissue. Our study looks at some of the biophysics at play and helps us get closer to refining this technique as a clinical tool.”
 
Current approaches to gene therapy often use viruses to gain access inside cells, which can cause severe side-effects, including inflammatory immune system reactions. To address this, researchers have developed gene-loaded intravascular microbubbles that can be targeted to release their payloads by direct navigation of focused ultrasound energy.
 
The Pitt researchers developed an ultrafast imaging camera capable of reaching speeds up to 25 million frames per second—the only one of its kind in North America. Using the camera, these researchers examined the biophysics of sonoporation. They determined that the oscillating bubbles need to generate a minimum amount of localized shear stress, beyond which cell membranes perforate and allow entry of a targeted therapeutic. 
 
“By allowing us to actually see the microbubbles vibrating at millions of times per second, our unique camera enabled us to determine that microbubble-induced shear stress is the critical factor for sonoporation,” said Xucai Chen, Ph.D., research associate professor of medicine, Pitt Division of Cardiology, and Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, who co-developed the camera system. “This new information, in turn, will facilitate the intelligent design of treatment protocols and microbubble fabrication to preferentially cause the desired effect of opening nearby cells. It also gives us a starting point to investigate how cells cope with this treatment.”
 
Researchers believe the findings will help them understand how the process of sonoporation works, as well as how experts can tailor the approach, including ultrasound amplitude levels and microbubble designs, toward its eventual clinical use.
 
“It’s critical for us to understand the biophysical mechanisms of sonoporation in order to translate this approach into an effective gene or drug delivery tool for patients,” said Flordeliza Villanueva, M.D., professor of medicine at Pitt, director of the Center for Ultrasound Molecular Imaging and Therapeutics, and the senior author of the investigation. “Building on the PNAS study, we are continuing to investigate how sonoporation affects the function of treated cells and to develop strategies to maximize its therapeutic effects.”
 
This work was partly funded by the National Institutes of Health (R01EB016516-01A1 and 1S10OD019973-01); the Fonds de Recherche Natures et Technologies postdoctoral grant from Quebec, Canada; and the Center for Ultrasound Molecular Imaging and Therapeutics.

 

Fluorescently labeled endothelial cell monolayer, pseudocolorized in blue/green, and imaged using spectral confocal microscopy.  One cell has been selectively perforated via ultrasound-induced microbubble cavitation (simultaneously captured by ultrafast imaging, top panels), allowing the entrance of a model therapeutic (orange). 

 

Video highlights the rapid oscillation of an individual microbubble. The oscillation, due to the exposure of this bubble to ultrasound, is occurring at one million times per second. 

Find a Doctor

Browse UPMC doctors and medical professionals to find the care that's right for you. Customize your search by specialty, zip code, last name, and more.


Visit the UPMC Find a Doctor website.
Make an Appointment

Find important information on scheduling your appointment or finding a doctor or service that meets your needs.


Request an appointment now.
Find a Location

Browse addresses and contact information for our network of hospitals, specialty care practices, and community health locations.


Find a UPMC location near you.
Pay Your Bill

Learn more about how to pay your UPMC bill. Find resources including payment methods and contact information for assistance.


Pay your bill now.
Find a Job

Advance your career with UPMC. Discover our latest job listings and learn about our values and career pathways.


Find your ideal job at UPMC.