Skip to Content
800-533-8762
  • Careers
  • Newsroom
  • Health Care Professionals
  • About Us
  • Contact Us
UPMC
  • Find a Doctor
  • Services
    • Frequently Searched Services
    • Frequently Searched Services
      Allergy & Immunology Behavioral & Mental Health Cancer Ear, Nose & Throat Endocrinology Gastroenterology Heart & Vascular Imaging Neurosciences Orthopaedics
      Physical Rehabilitation Plastic & Reconstructive Surgery Primary Care Senior Services Sports Medicine Telemedicine Transplant Surgery Walk-In Care Weight Management Women’s Health
      See all Services
    • Services by Region
    • Find a UPMC health care facility close to you quickly by browsing by region.
      UPMC in Western Pa. Western Pa. and New York
      UPMC in Central Pa. Central Pa.
      UPMC in North Central Pa. North Central Pa.
      UPMC in Western Md. Maryland & West Virginia
    • See All Services
  • Locations
    • Locations by Type
    • Locations by Type
      UPMC hospitals
      Hospitals
      Physical Therapy
      Physical Therapy
      Urgent care
      Walk-In Care
      UPMC Outpatient Centers
      Outpatient Centers
      UPMC Imaging Services
      Imaging
      Community Health Centers
      Community Health Centers
      See All Locations
    • Locations by Region
    • Locations by Region
      UPMC in Southwest Pa. Southwest Pa.
      UPMC in North Central Pa. North Central Pa.
      UPMC in Northwest Pa and Ny. Northwest Pa. & Western N.Y.
      UPMC in West Central Pa. West Central Pa.
      UPMC in Central Pa. Central Pa.
      UPMC in Western Md. Maryland & West Virginia
    • See All Locations
  • Patients & Visitors
    • Patient & Visitor Resources
    • Patient & Visitor Resources
      Patients and Visitors Resources Pay a Bill Classes & Events Medical Records Health Library Patient Information
      Patient Portals Privacy Information Shared Decision Making Traveling Patients Visitor Information
      Man uses mobile phone
      Pay a Bill
      Nurse reviews medical chart
      Request Medical Records
  • Patient Portals
  • Find Covid-19 updates
  • Schedule an appointment
  • Request medical records
  • Pay a bill
  • Learn about financial assistance
  • Find classes & events
  • Send a patient an eCard
  • Make a donation
  • Volunteer
  • Read HealthBeat blog
  • Explore UPMC Careers
Skip to Content
UPMC
  • Patient Portals
  • For Patients & Visitors
    • Find a Doctor
    • Locations
    • Patient & Visitor Resources
    • Pay a Bill
    • Services
    • More
      • Medical Records
      • Financial Assistance
      • Classes & Events
      • HealthBeat Blog
      • Health Library
  • About UPMC
    • Why UPMC
    • Facts & Stats
    • Supply Chain Management
    • Community Commitment
    • More
      • Financials
      • Support UPMC
      • UPMC Apps
      • UPMC Enterprises
      • UPMC International
  • For Health Care Professionals
    • Physician Information
    • Resources
    • Education & Training
    • Departments
    • Credentialing
  • Careers
  • Contact Us
  • Newsroom
  • UPMC >
  • Our Services >
  • Regenerative Medicine - The McGowan Institute >
  • Our Research >
  • Tissue Engineering
Regenerative Medicine - The McGowan Institute
About Us
What is Regenerative Medicine?
Working Towards Treatments
Our Research
Artificial Organs
Cell Therapy
Outcomes with Innovative Protocols
Tissue Engineering
Esophagus and Trachea Reconstruction
Muscle Tissue Regeneration
Nerve Guide
Orthopaedic Injury Repair
Resuscitation Fluid
Whole Organ Engineering
Patient Stories
News and Events
Contact Us
Regenerative Medicine - The McGowan Institute
About Us
What is Regenerative Medicine?
Working Towards Treatments
Our Research
Artificial Organs
Cell Therapy
Outcomes with Innovative Protocols
Tissue Engineering
Esophagus and Trachea Reconstruction
Muscle Tissue Regeneration
Nerve Guide
Orthopaedic Injury Repair
Resuscitation Fluid
Whole Organ Engineering
Patient Stories
News and Events
Contact Us

Chat Keywords List

  • cancel or exit: Stops your conversation
  • start over: Restarts your current scenario
  • help: Shows what this bot can do
  • terms: Shows terms of use and privacy statement
  • feedback: Give us feedback
Continue
Chat with UPMC
RESTART
MENU
CLOSE

Tissue Engineering

Tissue engineering is a strategy where biologically compatible scaffolds are implanted in the body at the site where new tissue is to be formed. If the scaffold is in the geometric shape of the tissue that needs to be generated, and the scaffold attracts cells the outcome is new tissue in the shape desired. If the newly forming tissue is subjected to exercise as it forms, the outcome can be new functional engineered issue.

Millions of patients have been treated with some form of tissue engineered devices, yet the field is in its infancy. The primary success stories have been with soft tissue regeneration.

Contact Us

McGowan Institute for Regenerative Medicine
Bridgeside Point II 
450 Technology Drive
Suite 300
Pittsburgh, PA 15219

Read information on campus shuttles.

Phone: 412-624-5500
Fax: 412-624-5363
Email: McGowan@pitt.edu

Esophagus and Trachea Reconstruction

If a patient's food tube or airway is damaged, scar tissue can form, which makes breathing or swallowing impossible. Currently, there are no treatments for these conditions other than to remove the damaged areas. McGowan Institute researchers—led by Stephen Badylak, MD—are working on a method that uses natural scaffolds seeded with the patient's own cells to encourage the growth of healthy tissue instead of scar tissue. In early studies, a damaged section of the food tube was replaced with a specially formed scaffold constructed from a material already being used in humans. Within 90 days, the scaffold was replaced with functional tissue.

Nerve Guide

Cells in the peripheral nervous system can regrow, but they sometimes have trouble linking up with each other, which is essential to restore feeling and function. To aid peripheral nerve regeneration, McGowan Institute faculty member Kacey G. Marra, PhD, and researchers have developed scaffolds made of FDA-approved biodegradable polymers and protein beads. Channels in the scaffolds act as guides for axons, the long arms of nerve cells, to grow longer and in the right directions. In early studies, a nerve guide seeded with stem cells derived from fat restored some hind leg mobility to paralyzed rats.

Muscle Tissue Regeneration

The reconstruction of skeletal muscle tissue either lost by traumatic injury, tumor ablation, or due to congenital abnormalities is hampered by the lack of availability of functional substitutes to this native tissue. Initial studies have focused on the use of small intestinal submucosa scaffolds to replace partial lost gastrocnemius muscle and Achilles tendon. These studies have shown that this material is capable of stimulating restoration of significant muscle mass and restitution of the musclulotendinous junction restoring functionality to a damaged limb. This new muscle growth is both contractile and innervated and comprises a mixed muscle fiber population similar to the native muscle that was lost. Research in this area is conducted by McGowan Institute affiliated faculty members Stephen Badylak, MD, J. Peter Rubin, MD, FACS, Neill Turner, PhD, and Michael Boninger, MD.

Orthopaedic Injury Repairs

Orthopaedic injuries can compromise mobility and hinder quality of life, and not just for professional athletes. At the McGowan Institute for Regenerative Medicine, we've been studying the forces on bones and joints for a long time. We’ve been working on:

  • Better ways to help heal orthopaedic injuries
  • Better artificial joints
  • Replacement tissue for cartilage and ligaments
Much of what we've learned, through the efforts of McGowan Institute affiliated faculty members Prashant Kumta, PhD, MaCalus Hogan, MD, MBA, Juan Tabaos, PhD, Alejandro Almarza, PhD, and Rocky Tuan, PhD, has already improved surgical and rehabilitation techniques for orthopaedic injuries.

Whole Organ Engineering

Organ engineering, as opposed to tissue engineering, poses significant challenges including the requirement for an immediately functional vascular network, functional parenchymal cells, and lymphatic and innervation potential. In recent years a promising approach for functional organ replacement has emerged: the decellularization of whole organs, providing an acellular three-dimensional scaffold composed of extracellular matrix (ECM). Importantly, the scaffold has been shown to retain the native vascular network of the organ. The long-term goal of this work is to establish the decellularization, recellularization with autologous cells (thus avoiding the need for subsequent immunosuppression), and transplantation criteria necessary to produce functional bioengineered organs for clinical translation. McGowan Institute researchers in the Badylak lab specifically focus on whole liver and heart regeneration.

Podcasts

Listen to our “Regenerative Medicine Today” podcasts.

UPMC
200 Lothrop Street Pittsburgh, PA 15213

412-647-8762 800-533-8762

Patients And Visitors
  • Find a Doctor
  • Locations
  • Pay a Bill
  • Patient & Visitor Resources
  • Disabilities Resource Center
  • Services
  • Medical Records
  • No Surprises Act
  • Price Transparency
  • Financial Assistance
  • Classes & Events
  • Health Library
Health Care Professionals
  • Physician Information
  • Resources
  • Education & Training
  • Departments
  • Credentialing
Newsroom
  • Newsroom Home
  • Inside Life Changing Medicine Blog
  • News Releases
About
  • Why UPMC
  • Facts & Stats
  • Supply Chain Management
  • Community Commitment
  • Financials
  • Supporting UPMC
  • HealthBeat Blog
  • UPMC Apps
  • UPMC Enterprises
  • UPMC Health Plan
  • UPMC International
  • Nondiscrimination Policy
Life changing is...
Follow UPMC
  • Contact Us
  • Website/Email Terms of Use
  • Medical Advice Disclaimer
  • Privacy Information
  • Active Privacy Alerts
  • Sitemap
© 2025 UPMC I Affiliated with the University of Pittsburgh Schools of the Health Sciences Supplemental content provided by Healthwise, Incorporated. To learn more, visit healthwise.org
Find Care
Providers
Video Visit
Portal Login